
CliqueStream: An Efficient and Fault-resilient Live Streaming Network

on a Clustered Peer-to-peer Overlay

Shah Asaduzzaman, Ying Qiao and Gregor Bochmann

School of Information Technology Engineering

University of Ottawa

Ottawa, ON, Canada K1N 6N5

{asad,yqiao074,bochmann}@site.uottawa.ca

Abstract

Several overlay-based live multimedia streaming plat-

forms have been proposed in the recent peer-to-peer stream-

ing literature. In most of the cases, the overlay neighbors

are chosen randomly for robustness of the overlay. How-

ever, this causes nodes that are distant in terms of proximity

in the underlying physical network to become neighbors,

and thus data travels unnecessary distances before reach-

ing the destination. For efficiency of bulk data transmis-

sion like multimedia streaming, the overlay neighborhood

should resemble the proximity in the underlying network. In

this paper, we exploit the proximity and redundancy prop-

erties of a recently proposed clique-based clustered over-

lay network, named eQuus, to build efficient as well as ro-

bust overlays for multimedia stream dissemination. To com-

bine the efficiency of content pushing over tree structured

overlays and the robustness of data-driven mesh overlays,

higher capacity stable nodes are organized in tree structure

to carry the long haul traffic and less stable nodes with in-

termittent presence are organized in localized meshes. The

overlay construction and fault-recovery procedures are ex-

plained in details. Simulation study demonstrates the good

locality propoerties of the platform. The outage time and

control overhead induced by the failure recovery mecha-

nism are minimal as demonstrated by the analysis.

1. Introduction

With the widespread adoption of broadband residential

Internet access, live multimedia streaming over the IP net-

work may be envisioned as a dominating application on the

next generation Internet. Global presence of the IP network

makes it possible to deliver large number of commercial

as well as amateur TV channels to a large population of

viewers. Based on the peer-to-peer (P2P) communication

paradigm, live multimedia streaming applications have been

successfully deployed in the Internet with up to millions

of users at any given time. With commercial implemen-

tations like CoolStreaming [20], PPLive [8], TVAnts [14]

and UUSee [19], among others, large volume of multimedia

content from hundreds of live TV channels are now being

streamed to users across the world.

Although naive unicast over IP works for delivering mul-

timedia stream to a restricted small group of clients, the

overwhelming bandwidth requirement makes it impossible

when the number of user grows to thousands or millions.

Several different delivery architectures are used in practice

for streaming of live video content, which include IP multi-

cast [5], infrastructure-based application layer overlays [7]

and P2P overlays. P2P overlays are gaining popularity due

to their ease of large-scale deployment without requiring

any significant infrastructure.

Live multimedia streaming over P2P networks has sev-

eral challenges to be addressed. Unlike file sharing, the live

media need to be delivered almost synchronously to large

number of users, with minimum delay in playback com-

pared to the playback at the source. Due to the large vol-

ume of data in the media stream, it is of paramount interest

to avoid redundant transmission of the stream. Construct-

ing efficient paths for streaming is especially hard because

the nodes participating in the overlay have very minimal

information regarding the topology of the underlying phys-

ical data transmission network. Moreover, the intermittent

joining and leaving behavior, or churn, of the nodes makes

it harder to maintain the overlay delivery paths once con-

structed. Heterogeneity of node bandwidths adds further

complexity to the problems.

Existing P2P live streaming platforms can be broadly

classified into two categories – tree based and mesh based.

In the tree based platforms, nodes are organized in a tree

topology with the streaming source at the root. The media

content is pro-actively pushed through the tree. Although

efficient in terms of avoiding redundant transmissions, the

nodes that happen to be interior nodes in the tree bear an un-

fair burden of forwarding the content downstream compared

to the nodes that become leaves of the tree. Some multi-tree

approaches like SplitStream [2] and ChunkySpread [16]

have been proposed that avoid this imbalance taking advan-

tage of multiple description coding of the media. Neverthe-

less, a major argument against the tree-based overlays is that

it is expensive to maintain the trees in presence of frequent

node join and leave or churn.

A dramatically different approach is to allow each node

to choose a small random set of overlay neighbors and thus

create a mesh topology. The stream is divided into small

fragments and each node comes to know what fragments

are possessed by its neighbors through periodic exchange

of their buffer-maps [20]. Required fragments to fill the

current playback buffer are then downloaded or pulled from

the neighbors as needed. Because of the unstructured and

random nature of the topology, the mesh-based platforms

are more robust to churn. However, there are several inher-

ent disadvantages in the pull process such as longer delay

and higher control overhead.

In most of the P2P streaming platforms, the overlay

neighbors are chosen randomly [19, 20], which is impor-

tant for maintaining global connectivity of the overlay net-

work. However, this causes nodes that are distant in terms

of proximity in the underlying physical network to become

neighbors. There are two problems that arise from such

random selection of neighbors. First, data travels unnec-

essary distances before reaching the destination. Second,

because the data travel path is uncorrelated with the locality

of the destination nodes, two nodes of very close proxim-

ity may receive data through completely disjoint paths from

the source. This causes significant redundancy in data trans-

mission and costs a huge amount of network bandwidth for

the whole platform.

In this paper, we present the design of a P2P media

streaming platform named CliqueStream that exploits the

properties of a clustered P2P overlay to achieve the local-

ity properties and robustness simultaneously. The clustered

peer-to-peer overlay named eQuus [11] organizes the nodes

into clusters of proximal nodes. It assigns identifiers to clus-

ters and replicates the routing information among all nodes

in a given cluster. The assignment of identifier also imposes

a structured mapping of the identifier space to the proximity

space.

We also exploit the existence of more stable and higher

bandwidth nodes in the network to allow construction of ef-

ficient delivery structures without causing too much over-

head from churn. Existence of stable nodes, or super

nodes, are observed both in file sharing networks and me-

dia streaming networks [17]. Our proposed platform elects

one or more stable nodes of highest available bandwidth in

each cluster and assigns special relaying role to them. To

maintain transmission efficiency, a content delivery tree is

constructed out of the stable nodes using the structure in the

underlying routing substrate and content is pushed through

them. Less stable nodes within a given cluster then par-

ticipate in the content dissemination and pull the content

creating a mesh around the stable nodes.

In most implementations of P2P streaming platforms, a

separate streaming overlay is created for distribution of me-

dia from each source, usually called a channel. We argue

that the user’s participation behavior for individual chan-

nel is significantly different from the participation behav-

ior with respect to the whole streaming platform. A user

usually switches channels frequently while keeping the TV

turned on for a long time. Therefore it is intuitively benefi-

cial to have a two-layer architecture, where a single routing

overlay is maintained for the whole platform and stream-

ing paths are rapidly constructed for individual channels

based on the structure of the substrate. Comparison between

per-channel overlay and single overlay supporting multiple

channel also supports the latter organization [4].

The rest of the paper starts with a review of the relevant

features of the clustered P2P overlay named eQuus and dis-

cussion on the modifications we made into it. The design

of the platform with details of its functional components is

presented in Section 3. In Section 4 we discuss the locality

and fault-tolerance properties of the platform.

2. eQuus: a Clustered DHT

2.1. Overview of eQuus

eQuus [11] is a structured peer-to-peer overlay which

forms a distributed hash table (DHT) consisting of clusters

or cliques of nodes instead of individual nodes. A unique id

is assigned to each clique instead of each individual node.

Nodes in the same clique are closer to each other than nodes

in different cliques, based on some proximity metric such as

latency. These nodes are close enough to maintain an all-to-

all neighborhood among them, and hence they are termed as

clique.

Unlike many DHT overlays, the nodes or the cliques do

not assume random ids. Rather, the segmentation of the id-

space closely resembles the segmentation of the proximity

space into cliques. If all possible ids define the id space,

each clique occupies a certain numerically contiguous seg-

ment of the id-space. Due to the id assignment process ex-

plained later in this section, cliques with numerically adja-

cent ids occupy adjacent segments of the proximity space.

All the existing cliques in the network can thus form a

successor-predecessor relationship based on the numerical

sequence of the ids such that the successor and predecessor

cliques are adjacent to each other.

As a new node joins eQuus network it becomes a mem-

ber of the closest clique in the proximity space. If this

causes a clique to contain more nodes than a system-defined

(a) The mapping of id-space to proximity

space in eQuus (reproduced from [11])

(b) Streaming tree over eQuus cliques (c) Streaming topology in CliqueStream

Figure 1. Proximity and streaming topology

threshold, the clique offshoots a new clique by splitting it-

self into two halves. One of the halves retains the previous

id. The other half gets a new id that differs from its parent’s

id by only one bit, effectively splitting the id space occu-

pied by the parent clique into two halves. As the network

grows, numerically consecutive segments of the id space

is thus assigned to adjacent cliques. In fact, if the cliques

are ordered by their numerical id they occupy the consec-

utive positions in a space-filling curve that fills the whole

proximity-space. This is illustrated in Figure 1(a). Thus

two cliques with numerically close ids are always close to

each other in the proximity space, although the reverse may

not always be true. Moreover, the longer the matching pre-

fix of two different ids, the closer they are positioned. In

other words, all the nodes in the whole id space may be hi-

erarchically divided into local groups based on the length

of the matching prefix in their ids. For example the cliques

sharing id prefix 1011 may resemble a local group which is

further divided into two sub-groups with prefix 10110 and

10111 respectively.

A message is routed towards a clique containing a certain

id using the standard prefix matching algorithm. All nodes

in the same clique share the same routing table. The rout-

ing table contains clique ids with different length of prefix

match with the current cliques id. For each clique id, ad-

dress of k random nodes of that particular clique is stored.

The prefix-matched routing implies that if a message is

routed from clique A to clique B and clique C, the mes-

sage will be first carried to a region that shares the common

prefix of B and C along a common path. The path will then

diverge towards each of B and C. The id assignment process

ensures that the closer B and C are in terms of proximity, the

longer is their common prefix. This implies that messages

from a single source to multiple destinations in close prox-

imity will travel along a long common path before diverging

(Figure 1(b)). We exploit this property to create network ef-

ficient dissemination trees for live video streaming from a

single source.

2.2. Introducing Stable Nodes

We modify the original design of eQuus by introducing

stable nodes. Heterogeneous stability and capacity charac-

teristics of the nodes are common in peer-to-peer networks.

Thus the existence of stable nodes, or super nodes, is well-

established in both file sharing and streaming peer-to-peer

networks. Even though all the nodes that are recipient of the

streams are similarly low capacity and unstable, some high

capacity servers may be deliberately introduced in locations

across the network which may act as stable nodes.

We assume that each clique maintains t stable nodes all

the time, where t is a system parameter. Stable nodes are

elected from the existing eligible nodes in the clique. A

node becomes eligible to be a stable node after being alive

for a certain threshold amount of time T . The clique always

elects t nodes having highest outgoing bandwidths among

the eligible nodes. For bootstrapping, when there is a sin-

gle node in the whole network, it immediately becomes a

stable node. The election is initiated whenever a new node

becomes eligible to be a stable node.

To reduce the overhead of replicating the routing table

to each node of a clique, we replicate the table among the

stable nodes only. Each node however maintains connection

with all other nodes in the same clique. Also, whenever a

node is elected as stable node or a stable node loses its stable

node status, this information is updated to all nodes in the

clique. A stable node remains a stable node in the cliques

that are born after the split of a clique. New stable nodes are

elected at the event of split to maintain sufficient number of

stable nodes in each clique.

2.3. Modification in the Routing Mechanism

Inclusion of the stable nodes have caused some modi-

fications to the original routing method of eQuus. These

modifications also assist in the construction of the stream-

ing network such that the stream of any particular channel

is carried between two different cliques through only one

link. Each node in a clique maintains addresses of k nodes

for each clique it has as its routing table entry. Each node

periodically updates this list of k nodes and always tries to

have at least one of them to be a stable node. While routing

a message to a particular clique, based on the routing table

match, the stable node is preferentially selected instead of

randomly choosing one of the k nodes. However, the rout-

ing works even if none of the k nodes is a stable node. If a

non-stable node receives a message, it forwards the message

to any of the stable node in the same clique.

In the live streaming platform, a CliqueStream layer is

implemented on top of the modified eQuus routing sub-

strate. When a CliqueStream message is received by the

eQuus routing layer, it invokes the forward method in the

CliqueStream layer with the message as parameter, before

forwarding the message to another clique. The forward

method may modify the message including its destination.

The eQuus routing layer then processes the modified mes-

sage and forwards it accordingly. When a message arrives

its destination node, the deliver method in the CliqueStream

layer is invoked.

The header of each eQuus layer message includes source

and destination addresses and the message type. The mes-

sage type denotes the application which is CliqueStream in

this case. The source and destination addresses, each has

two segments – one is the clique id and one is the node’s

IP address. The clique id is used to route a message to any

node in a particular clique and then the node IP address is

used to deliver the message to a particular node. The IP ad-

dress may be set to all 0’s to denote any node in the clique.

The forwarding of any message can be stopped by setting

the clique id to a special null value.

3. System Overview

In this section we present the details of the CliqueStream

video streaming platform that is built on top of the modi-

fied version of eQuus presented in Section 2.1. The purpose

of the platform is to facilitate live streaming of multimedia

content generated from arbitrary source node to a large set

of destinations nodes. A large number of streaming chan-

nels can be delivered through a single platform instead of

creating and maintaining a separate overlay for each chan-

nel. This allows better balancing of the forwarding load

among the participating nodes.

3.1. Streaming Topology and Procedure

The stream dissemination topology of CliqueStream is

a combination of tree and mesh structure. We exploit the

proximity features of the eQuus clustered overlay described

in Section 2.1 to form an efficient topology. Because the

nodes in a single clique are close to each other, arbitrar-

ily interconnecting them in a mesh does not incur any sig-

nificant inefficiency in the network. Therefore, if at least

one node in a clique receives the stream, other nodes in

the same clique can form data-exchange partnerships as in

CoolStreaming [20] and receive the channel. Therefore we

need some mechanism to deliver the stream to at least one

node in each clique that has some nodes trying to receive the

stream. For each channel, a dissemination tree is formed in-

cluding only one stable node from each participating clique.

The source of the stream is at the root of the tree. The

stream is pushed from the source to all the participating sta-

ble nodes. The tree-mesh topology for dissemination of a

streaming channel is illustrated in Figure 1(c). The routing

properties of the eQuus overlay are exploited to construct

efficient dissemination trees for each channel. The follow-

ing sub-section explains the tree formation protocol.

3.2. Group Membership Management

All the nodes that want to receive a particular channel

form a multicast group. There may be some stable nodes

that do not intend to receive the stream but participate in

the group as relay nodes. We use the term member node to

collectively denote the recipient and the relay nodes. The

group (or channel) is identified by a globally unique name.

We assume the existence of a directory service that returns

the address of the source node for each channel name.

Each stable node in a clique maintains a table channel-

List that maps channel name to a channelInfo data struc-

ture and includes all channels being received or relayed by

at least one node in the clique. There may be a single or

several stable nodes in each clique depending on the repli-

cation strategy. In case there are multiple stable nodes, a

consistent replica of the channelList is maintained in each

of them. In our design, we decided to use at least two stable

nodes per clique, to facilitate the failure recovery mecha-

nism discussed later. For each channel, if one of the sta-

ble nodes acts as a relay node, the other is maintained as

a backup-relay. This also facilitates sharing of the relaying

load among the stable nodes. The number of stable nodes

in a clique may increase based on the relaying load.

The channelInfo contains the meta-data needed to main-

tain the structure of the streaming tree for the channel.

This includes relayNode and backupRelayNode – addresses

of the relay node and backup relay nodes in the clique,

childList – list of children nodes in the streaming tree, par-

ent – parent node in the streaming tree, and backupParent

– the backupRelayNode in the parent clique designated for

the channel. To avoid inconsistency, updates to the chan-

nelInfo is always initiated by the relay node and then prop-

agated to the other stable nodes. In addition to this repli-

cated information, each relaying stable node maintains a

streamBuffer that holds a certain number of current seg-

ments of the stream when relayed, and a corresponding

bitmap bufferMap to identify the segments. The relay node

also maintains a recipientList that lists all the nodes in the

same clique that are receiving or relaying the channel, in-

cluding the relay node itself. Each node in the clique, re-

gardless of being stable or not, maintains a streamBuffer, a

bufferMap and partnerList for every channel it currently re-

ceives. partnerList is a list of the nodes in the same clique

with whom this node is exchanging the stream segments.

When a node wants to join a group to receive a channel,

it sends a join request to one of the stable nodes in its own

clique. Receiving a join request, the stable node first looks

up the channelList if the requested channel is already there

and which stable node is relaying it. If found then the join

message is forwarded to that stable node. The relaying sta-

ble node maintains a recipientList that lists the nodes in the

same clique that are receiving the channel. When the relay-

ing stable node receives the request, it adds the requesting

node to the list and returns a random subset of the recipi-

entList to the requesting node. Receiving the reply, the re-

questing node can now request those nodes for their current

bufferMap download stream segments. In turn, those nodes

also know the presence of the new node in recipientList and

may include it in their partnerList.

If the stable node, on receiving the join request, does not

find the requested channel in its channelList, it looks-up the

address of the source node for the channel from the direc-

tory service and sends a joinRemote request to the source

node to include the stable node as a member of the group.

On receiving the joinRemote, the source sends an addNode

message using the eQuus routing substrate, towards the

node that sent the joinRemote request. The addNode mes-

sage travels through nodes in several other cliques before

reaching the joining clique. While traveling through the

cliques, the addNode message creates or extends the stream-

ing tree and establishes a streaming path from the root to the

joining stable node using one stable node in each interme-

diate clique.

In each of the intermediate cliques the addNode reaches,

the data structures are updated as follows. When a stable

node in a clique receives an addNode message and the for-

ward method is invoked, it performs a lookup in its channel-

List table to find the relaying stable node for the particular

channel. In case no entry for the channel is found in the

channelList, the stable node initiates the relay election pro-

tocol to elect one of the stable nodes as relay node for the

channel. The simplest version of this protocol is to select

this stable node. Alternatively, the protocol may select the

stable node with highest available uplink bandwidth, to en-

sure balancing of relaying load among the stable nodes. At

the same time, a backupRelayNode is also selected to com-

plement the relay node.

An addNodeFwd message is then sent to the relay

node encoding the source and destination addresses of the

addNode message as parameter. The original addNode mes-

sage is dropped by modifying its destination to null. The re-

lay node then updates the channelInfo data for the channel

or creates a new channelInfo record in the channelList, de-

pending on whether it was already relaying the channel or

not. A new addNode message is routed towards the joining

node. The relay node also sends an addNodeAck message

to the parent node, which is a relaying stable node in an

upstream clique. Receiving the addNodeAck, the upstream

relay node adds the sender of the message to its childList

table and initiates pushing of the stream to the new child

along with others.

When the addNode message is finally delivered to the

stable node that sent the joinRemote request, it initializes

itself as a relay node for that channel and updates the data

structures to maintain the streaming tree in a similar man-

ner as above. A response is then sent back to the node that

initially sent the join request, containing the current recipi-

entList and bufferMap. The joining node then starts down-

loading the stream segments from the relay node or other

nodes possibly included in the recipientList.

3.3. Graceful Departure of Nodes

A node may leave a group for a channel or leave the

whole system. The underlying routing substrate needs to be

updated when a node leaves the system. In case the num-

ber of nodes in a clique becomes lower than a threshold, the

clique merges with its successor clique. Details of this are

discussed in [11]. When a non-stable node leaves a channel

group, it sends leave message to all its mesh neighbors, in-

cluding the relaying stable node. The relay node updates the

recipientList and other neighbors update their neighborhood

table. If number of mesh neighbors becomes lower than a

system defined threshold, a node can refresh the neighbor

list by asking the relay node for a random list of recipients

in the clique.

A stable node does not depart from relaying a channel

if it is alive and participating in the CliqueStream platform,

unless both of its childList and recipientList are empty. If it

wants to leave the CliqueStream platform, then it initiates a

relay election protocol among the other stable nodes in the

clique and the stable node with highest available bandwidth

is selected. Then the leaving node initiates the handOver

protocol to transfer the relaying role for the channel it was

relaying. The parent node is notified of the new relay node

and channelInfo for the particular channel updated in all the

stable nodes in the clique to reflect the assumption of new

relay node. The departing stable node also initiates a stable

node election protocol concurrently. The node departs after

initiating the handOver.

3.4. Failure of Nodes and Reconstruction of Delivery

Tree

Apart from graceful departure, nodes may suddenly de-

part or crash. Here we describe how nodes failures are de-

tected and how the delivery tree is reconstructed.

Failure of non-stable nodes are detected by their mesh

neighbors and their neighbor list is replenished by finding

new neighbors, in the same way as in graceful departure.

When a stable node fails, all the downstream stable

nodes in the dissemination tree for each of the channels the

stable node was relaying, stop receiving the stream. After

passing a small threshold of stoppage time, all of them will

react to recover from the failure of the upstream relay node.

However, the protocol we devised quickly resolves which

relay node actually failed and then transfers its responsibil-

ity to the back-up relay node in the same clique. Failure of

the relay node is also detected by the backup node as they

periodically exchange heartbeat messages.

Any stable node, detecting the stoppage of receiving the

pushed stream to itself, checks whether its parent is still

alive by sending an isAlive message to the parent and waits

for an alive message as reply. In case the reply timeouts,

it sends a recoverTree message to the node designated as

backupParent to take over. On receiving the recoverTree

message or detecting the failure of the relay node through

heartbeat timeout, the backupRelayNode initiates a recovery

of the link. It retains a replica of the channelInfo data struc-

ture, and it knows the parent node of the failed relay node.

A handOver message is sent to that parent to consider the

backup node as a child instead of the failed node. Thus the

failure is recovered completely locally. A new backup relay

node is also designated at this time.

In the very unlikely event when both the relay node and

backup relay node fails concurrently, the tree will not be re-

covered and the node that sent the recoverTree message to

the backup parent will not receive any stream data. Passing

a threshold amount of time without receiving any stream

data after receiving the alive message from the parent or af-

ter sending the recoverTree message, the downstream nodes

will realize that both relay and the backup relay failed in

some upstream node. All of these downstream relay nodes

will join the streaming group independently using the join

procedure.

3.5. Split and Merge of Cliques

As described in Section 2.1, when arrival and departure

of nodes make a clique too large or too small, the clique

splits into two or merge with its successor clique. In ad-

dition to the routing table updates done by the eQuus sub-

strate, the tree structure maintained by the relay nodes may

also need to be updated during split and merge.

When a clique merges with its successor, we denote the

former as merging clique and the latter as merged clique.

The new clique after merger retains the id of the merging

clique and the id of the merged clique vanishes. The sta-

ble nodes of the previously individual cliques maintain their

stable status for a while. Each of the relaying stable nodes

of both the merging and merged cliques update all the sta-

bles nodes in the merged clique with the channelInfo data

for all the channels it is relaying. This allows each stable

node to get all the channelInfo data. For the channel, whose

relay node comes from the merged clique, only the children

whose clique id matches some routing table entry, is kept

as children. All the other children are requested to rejoin

the streaming tree and inform back after the join procedure

completes. Relaying to those children stops after confirma-

tion of the join is received or timeout occurs. In case two

relay nodes are found for the same channel, the one that ear-

lier belonged to the merging clique prevails and the valid

children from the relay in the merged clique are transferred

to that node. All the invalidated relay nodes keep relaying

to all the invalidated children until confirmation of re-join

is received or timeout occurs.

When overpopulated, a clique splits into two and one of

them retains the previous clique’s id. Let us denote this

clique as primary the other clique as offspring. The stable

node of the previous clique remains as stable node in the

new cliques and they belong to either the primary or the

offspring clique according to the proximity rules of split-

ting. The channels relayed by the stable nodes belonging to

the offspring clique may need to be handed over to the sta-

ble nodes in the primary clique to make the streaming tree

consistent with the routing tables. This is needed only if the

channel has a non-empty childList. In case there are some

recipient nodes in the offspring clique for that channel, the

stable node re-joins the channel using the new clique id be-

fore performing the hand-over. In case a channel relayed

by a stable node in the primary clique has some recipient

now belonging to the offspring clique, they are requested to

re-join the channel. This will result in a stable node in the

offspring clique to become a relay node for that channel.

Note that new stable nodes are recruited in both the primary

and the offspring clique as necessary to accommodate the

channels. At the beginning, the stable nodes in offspring

clique are underloaded. However, they soon get new relay

loads when new join messages are routed through them.

4. Analysis of System Features

In this section we discuss the notable features of the

CliqueStream platform. The main argument of the paper

is that clique-based overlays allow creation of streaming

topology with good locality properties compared to other

approaches. The CliqueStream approach also allows fast

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

c
o

n
v
e

rg
e

n
c
e

 F
a

c
to

r

distance between two nodes

Figure 2. Convergence of streaming route

 0

 2

 4

 6

 8

 10

 12

 100 200 300 400 500 600 700 800 900 1000

m
e

a
n

 s
tr

e
tc

h

group size

Random Tree
Optimal NetLoad Tree

CliqueStream
Optimal Stretch Tree

Figure 3. Stretch of the streaming path in dif-

ferent tree construction protocols

and localized recovery mechanism in presence of node de-

partures. The following sub-sections discuss each of these

features in details.

4.1. Locality

The locality property in the overlay network is achieved

when overlay neighbors are in close proximity in the phys-

ical network. There are twofold benefits of forming a

locality-aware overlay – first, the stretch of the streaming

path from the source to the recipient nodes is minimized,

and second, a significant portion of the streaming paths

from the source to each individual recipient are shared.

To demonstrate these two aspects of locality we performed

some simulation experiments.

For the simulation model, we assumed that the nodes

can be laid out in a 2-dimensional euclidean space based

on some proximity metric, such as network latency. We

also assume that the nodes are uniformly distributed in the

2-dimensional space. While the uniform distribution does

not accurately reflect the node distribution in large networks

like the Internet, several works have shown that nodes in the

Internet can be mapped on an euclidean space with good ac-

curacy [6].

First, we tried to demonstrate that if a message is routed

from a source node to two different destination nodes, the

fraction of the path that is common to both routing paths

is correlated to the distance between the two destinations.

This implies, when two nodes are close enough in the eu-

clidean space, a large portion of the paths from the source to

the two nodes are shared. We measure the commonality of

the two paths using a convergence metric used in [1]. If dc is

the length of the common path and d1 and d2 are the lengths

of the paths from the diverging point to the two nodes, then

the convergence metric C = (dc

dc+d1

+ dc

dc+d2

)/2. C has a

value 0 when the two paths are completely disjoint and 1
when they are completely shared.

We created an eQuus overlay of 100000 nodes, where

minimum and maximum clique size parameters were set to

be 32 and 128, respectively. The length of the id was 64
bits. The parameter b that defines how many bits of the

id are matched in each routing hop was set to 2. Note that

maximum fan-out of a streaming tree in CliqueStream is 2b.

We chose 100 random nodes as source, and for each source

we chose 100 random pairs of destination nodes. Conver-

gence metric is then computed for each pair of paths. In

the simulation runs, we placed the nodes on an arbitrar-

iliy chosen 3500 × 3500 2-d plane. Length (or cost) of an

overlay link between two nodes, which is used for comput-

ing convergence factor and network load (defined later), is

computed as the euclidean distance between the two nodes

on the given plane. Figure 2 plots the average convergence

metric against the distance between two destinations. This

clearly shows the correlation of convergence to the distance

between the pair of destinations.

In the next set of experiments, we evaluated the prop-

erties of the streaming tree created over the eQuus sub-

strate. We constructed a eQuus substrate with 50000 nodes

and constructed a streaming tree using a random subset of

nodes. For comparison, a random tree was created with

the same set of node joining the tree in the same order.

Each newly joining node randomly chooses one of the ex-

isting tree-nodes as its parent. To evaluate the stretch of

the source-to-recipient streaming paths we used the ratio

of length of the routing path to the length of the shortest

possible source to recipient path (which is the euclidean

distance). The average stretch for source to node paths is

computed for various group sizes. To evaluate the load on

the network due to redundant data transmission paths, we

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 200 300 400 500 600 700 800 900 1000

n
e

tw
o

rk
 l
o

a
d

 p
e

r
m

e
m

b
e

r

group size

Random tree
Optimal Stretch Tree

CliqueStream
Optimal Netload Tree

Figure 4. Network load per member in differ-

ent tree construction protocols

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500 600 700 800 900 1000

n
e

tw
o

rk
 l
o

a
d

 p
e

r
m

e
m

b
e

r

group size

CliqueStream w/o supernode
CliqueStream with supernode

Figure 5. Use of stable nodes reduces the net-

work load

used a network load metric that counts the total length of

paths traveled by a message (and its replicas) to dissemi-

nate the message from the source node to all the recipients.

For comparison across different sizes of groups, the metric

is normalized through dividing by the size of the group.

We considered two other types of optimally constructed

trees for comparison– one that has minimal average stretch

of the source to destination path, and the other that has mini-

mal network load. The optimal stretch tree is constructed by

connecting the newly joining node as close as the root, sub-

ject to the maximum fan-out constraint which is the same

as CliqueStream. The optimal load tree is constructed by

connecting each newly joining node to the node that has

shortest distance from the new node.

Figure 3 compares the average stretch of the source to re-

cipient paths for different tree construction protocols. The

CliqueStream trees has significantly lower stretch than ran-

dom trees and pretty close to the optimal stretch tree. In

fact the stretch of the CliqueStream tree is defined by the

stretch of the lookup paths in eQuus, which is bounded by

the logarithm of total number of nodes in the substrate.

Figure 4 compares the network load per member met-

ric for different tree construction protocols. It shows that

network load per node in CliqueStream is significantly

lower than that in the random tree. The network load of

CliqueStream is also lower than that of optimal stretch tree

and pretty close to that of optimal load tree. Another ob-

servation is that network load per node actually decreases

when more nodes are added in the tree. This implies better

scalability of the CliqueStream platform.

The benefits of using stable nodes in CliqueStream is

evaluated in Figure 5. The main argument behind using

stable nodes is that it eliminate redundant streaming paths

and thus reduces the network load. This effect is demon-

strated in Figure 5, where the tree in CliqueStream with sta-

ble nodes causes less network load irrespective of the size

of the group. If stable nodes are not considered and a stream

is forwarded along the eQuus routing paths from source to

individual nodes, there may be multiple overlay links carry-

ing the traffic between the nodes in the same pair of cliques,

as illustrated in Figure 6(a) and 6(b).

(a) No stable node (b) With stable node

Figure 6. Stable nodes eliminate redundant
paths

The use of stable nodes, however, causes some of these

nodes to act as relay node even if the node itself is not re-

ceiving the particular channel. This may result in unneces-

sary relay load for the stable nodes. The worst case scenario

occurs when each member of every clique is recipient of a

different channel. In that case, if there is only one relay

node per clique, each relay node has to relay all the chan-

nels to 2b downstream relay nodes. On the other extreme,

the maximum benefit of aggregation of streaming paths in

the stable nodes can be achieved for very popular channels

and when the popularity of different channels are concen-

trated in different network proximities. To avoid the worst

case scenario, CliqueStream recruits more stable nodes in

a clique when relay load exceeds the capacity of the exist-

ing stable nodes. The number of stable node in a clique is

bounded only by the total number of nodes in the clique. In

any case, the relay load on a stable node for a single channel

is bounded by a constant 2b.

4.2. Startup Delay and Playback Latency

Two important performance metrics that are of concern

for live video streaming overlays are the startup delay for

a newly joined node and the latency in the playback of the

stream observed at the node. According to the node join

protocol, 1 + log2b (N/c) messages need to be exchanged

in the worst case, to receive a new channel. So, the startup

delay is O(log2b (N/c)), where N is total number of nodes

and c is number of nodes per clique. For a locally popular

channel, only one message is required, so the delay is only

one RTT in this case. The playback latency is the latency of

the path from the source node to the stable node in the local

clique, which is O(log (N/c)), plus the number of hops in

the local mesh. Assuming that the diameter of a random

mesh is logarithmic to the number of nodes, the total latency

is O(log (N/c) + log c) or, O(logN).

4.3. Fault Tolerance

Improved fault tolerance of CliqueStream results from

two facts. On one hand, relatively more stable and higher

capacity nodes are placed as internal nodes of the tree and

less stable nodes are the leaves of the tree. Thus the effect of

failure of non-stable nodes are localized inside the cliques.

The use of receiver-driven pulling on a mesh-like topology

inside the clique makes it further adaptive to the node dy-

namics. On the other hand, the clustered topology allows

multiple stable node in a single clique, which in turn allows

maintaining a backup relay node for each channel. The use

of backup relay nodes facilitates fast and localized recovery

from failure of stable nodes.

We can determine time impact of a failure in terms of

average round trip time between nodes in adjacent cliques

(RTT). The detection time for a stable node failure is

bounded by the minimum of the follow two – the heart-

beat message interval or the timeout period for the down-

stream node before invoking the isAlive message plus the

timeout period waiting for the alive message plus 1

2
RTT

for notifying the backup relay node. If the timeouts are

set to 2RTT, the bound is 4.5RTT if the heartbeat interval

is larger. The recovery time is 1

2
RTT for a backup relay

node to notify the parent plus 2 × 1

2
= 1 RTT to send the

stream from the parent to the failure detecting child through

the backup relay. So, in total, failure detection and recov-

ery time tfr = 6RTT. For a 50 ms RTT, this amounts to

300ms only. The parent of the failed relay node is unaware

of the failure until it receives the handover message from

the backup relay node. So the video segments streamed dur-

ing the failure-recovery period will be lost.

CliqueStream is also quite efficient in terms of control

message overhead induced by each stable node failure. In-

stead of every downstream node rejoining the tree, only the

immediate children initiate the recovery process and only a

one step recovery process is conducted by the backup relay

node. Each of the downstream nodes exchanges a (isAlive,

alive) message pair except the immediate children of the

failed relay node. The recovery process takes only 2 mes-

sages from the backup relay node. Each of the immediate

children may send 1 request the backup parent to initiate the

recovery process.

5. Related Work

There are quite few approaches for streaming video over

P2P overlays both in industry and in academia. Widely

used commercial implementations such as PPLive [8] and

UUSee [19], use a receiver driven content pulling over un-

structured mesh overlays with random neighborhood, which

are variants of the CoolStreaming [20] protocol. The ineffi-

ciency of these platforms in terms of huge long-haul traffic

burden is explained in [8].

There have been several efforts to create peer-to-peer

overlays that select the overlay neighbors based on lo-

cality characteristics of the underlying physical network.

CAN [12] has applied landmark based binning approach to

assign d-dimensional coordinates to each node and routing

is performed based on the proximity of the nodes in the co-

ordinate space. Zigzag [15] is another architecture that or-

ganizes the nodes into locality based clusters. It creates a hi-

erarchy of clusters, grouping leaders of lower level clusters

into higher level clusters and streaming the media content

through this hierarchy.

Among the video streaming or group multicast topolo-

gies on structured peer-to-peer overlays, Scribe [3] is a

prominent one. Scribe creates the multicast tree based on

the reverse path of the routing of messages in the Pastry [13]

routing substrate. However, since pastry assigns random ids

to each node, the routing path is likely to have random hops

between locally uncorrelated nodes. Some form of locality

is however achieved by careful selection of routing table en-

tries. In CliqueStream, the multicast streaming tree is con-

structed based on the forward paths of the messages from

source to the receivers on the clustered and structured peer-

to-peer overlay named eQuus. Because node id assignment

in eQuus is strongly correlated with locality, the routing

paths are more directionally controlled and has predictable

locality properties.

In general P2P streaming platforms apply either con-

tent pushing over multicast tree or receiver driven content

pulling over a mesh overlay. mTreeBone [18] has pro-

posed a hybrid approach where more stable nodes consti-

tute the internal nodes of the tree and more dynamic nodes

are placed at the leaf level. the leaf node also participate in

a mesh, and the stream is delivered using a combination of

pushing and pulling. Our approach of using stable node to

construct the tree backbone is similar to mTreeBone. How-

ever, the locality based clustering was not considered in

mTreeBone.

Making the overlay localized runs the risk of partitioning

the network. In DAGStream [9] a DAG of nodes are created

instead of a tree and content is delivered by receiver driven

pulling. Presence of multiple parents allow the system to

work in presence of node failure or departure. AnySee [10]

maintains a set of backup paths for each active path over

which it streams the data. When stream in the active path is

disrupted, one of the backup path is selected and assumed

as active path. However, switching the whole path takes

much longer time than switching a single hop as done in

CliqueStream.

Zigzag [15] maintains a head and an associate head for

each cluster. An associate-head receives the stream from

the head of a foreign cluster and disseminates it inside the

cluster. The head controls the resources within a cluster and

can quickly elect a new associate-head in case current one

fails. Failure of the head is tolerated by selecting alterna-

tive foreign head by the downstream associate-head. Un-

like hierarchical clustering in Zigzag, CliqueStream creates

disjoint clusters of nodes at the same level. CliqueStream

maintains backup relay node for each relaying stable node.

The recovery procedure is initiated by the backup node of

the same clique and it is contained locally.

6. Conclusion

In this paper we have exploited the features of a clus-

tered distributed hash table overlay to create network ef-

ficient topology for video streaming. Our analysis show

that the clustered topology provides good locality proper-

ties such as low stretch and low communication load com-

pared to random topologies commonly used in existing sys-

tem. Also, we have introduced fast and localized failure

recovery mechanism to make the streaming plaform robust

against node dynamics. Relatively more stable nodes are

used as internal nodes of the streaming tree so that their fail-

ure probability is minimal. Moreover, backup relay nodes

are used to allow fast recovery. The localized clustering of

the nodes allows efficient election mechanism for the relay

nodes and backup relay nodes.

To avoid the small disruptions in the streams that occur

due to failure of tree nodes, use of multiple description cod-

ing and streaming different descriptions over different trees

may be a good solution. How multiple node-disjoint trees

can be constructed in the clustered peer-to-peer overlay, re-

mains to be an open problem to solve.

References

[1] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploit-

ing Network Proximity in Peer-to-peer Networks. Technical

Report MSR-TR-2002-82, Microsoft Research, 2002.

[2] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Row-

stron, and A. Singh. SplitStream: High-bandwidth Multicast

in Cooperative Environments. In 19th ACM Symp. on Oper-

ating Systems Principles (SOSP), pages 298–313, 2003.
[3] M. Castro, P. Druschel, A. M. Kermarrec, and A. Rowstron.

Scribe: a Large-scale and Decentralized Application-level

Multicast Infrastructure. IEEE J. Selected Areas in Commu-

nications, 20:1489–1499, 2002.
[4] M. Castro, M. B. Jones, A. M. Kermarrec, A. Rowstron,

M. Theimer, H. Wang, and A. Wolman. An evaluation of

scalable application-level multicast built using peer-to-peer

overlays. In IEEE INFOCOM, Apr. 2003.
[5] M. Chay, P. Rodriguez, S. Moony, and J. Crowcroft. On

Next-Generation Telco-Managed P2P TV Architectures. In

7th IPTPS, Feb. 2008.
[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a

Decentralized Network Coordinate System. In ACM SIG-

COMM ’04, pages 15–26, 2004.
[7] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and

B. Weihl. Globally Distributed Content Delivery. IEEE In-

ternet Computing, 6(5):50–58, 2002.
[8] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. ross. A Mea-

surement Study of a Large-Scale P2P IPTV System. IEEE

Tans. Multimedia, 9(8):1672–1687, Dec. 2007.
[9] J. Liang and K. Nahrstedt. DagStream: Locality Aware and

Failure Resilient Peer-to-peer Streaming. In Intl. Conf. on

Multimedia Computing and Networking (MMCN), 2006.
[10] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng. Any-

See: Peer-to-Peer Live Streaming. In IEEE INFOCOM, Apr.

2006.
[11] T. Locher, S. Schmid, and R. Wattenhofer. equus: A prov-

ably robust and locality-aware peer-to-peer system. Peer-to-

Peer Computing, 2006. P2P 2006. Sixth IEEE International

Conference on, pages 3–11, 06-08 Sept. 2006.
[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable networks. In

ACM SIGCOMM-01, pages 161–172, Aug. 2001.
[13] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-

ized Object Location, and Routing for Large-Scale Peer-to-

Peer Systems. In IFIP/ACM Intl. Conf. on Distributed Sys-

tems Platforms, pages 329–350, 2001.
[14] T. Silverston and O. Fourmaux. P2P IPTV Measurement: A

Case Study of TVAnts. In 2nd Conference on Future Net-

working Technologies (CoNEXT), Dec. 2006.
[15] D. A. Tran, K. A. Hua, and T. T. Do. A Peer-to-peer Ar-

chitecture for Media Streaming. IEEE J. Selected Area in

Communications, 22(1):121–133, 2004.
[16] V. Venkataraman, P. Francisy, and J. Calandrinoz.

Chunkyspread: Multitree Unstructured PeertoPeer Multi-

cast. In 6th IPTPS, 2006.
[17] F. Wang, J. Liu, and Y. Xiong. Stable Peers: Existence,

Importance, and Application in Peer-to-Peer Live Video

Streaming. In IEEE INFOCOM, Apr. 2008.
[18] F. Wang, Y. Q. Xiong, and J. C. Liu. mTreebone: A Hy-

brid Tree/Mesh Overlay for Application-Layer Live Video

Multicast. In 27th IEEE ICDCS, page 49, 2007.
[19] C. Wu, B. Li, and S. Zhao. Magellan: Charting the Large-

Scale Peer-to-Peer Live Streaming Topologies. In IEEE

ICDCS, Jun. 2007.
[20] X. Zhang, J. Liu, B. Li, and Y. Yum. CoolStreaming/DONet:

a Data-driven Overlay Network for Peer-to-peer Live Media

Streaming. In IEEE INFOCOM, Mar. 2005.

